Fritjof Bornebusch
2018-09-27 14:45:49 UTC
Hi,
I'm struggeling a bit with the following proof:
I have an automaton (mealy machine) and I want to show that a given function (f) to this
machine is applied to all elements of a given list (l).
The mealy machine is defined as:
Fixpoint mealy {S I O:Type} (f: S -> I -> (S*O)) (s: S) (l: list(I)) : list(O) :=
match l with
| [] => nil
| i::is => match f s i with
| (s', o) => o :: (mealy f s' is)
end
end.
How can I formulate this in Coq?
Regards,
--f.
I'm struggeling a bit with the following proof:
I have an automaton (mealy machine) and I want to show that a given function (f) to this
machine is applied to all elements of a given list (l).
The mealy machine is defined as:
Fixpoint mealy {S I O:Type} (f: S -> I -> (S*O)) (s: S) (l: list(I)) : list(O) :=
match l with
| [] => nil
| i::is => match f s i with
| (s', o) => o :: (mealy f s' is)
end
end.
How can I formulate this in Coq?
Regards,
--f.